Home
Class 12
MATHS
lim(x rarr0)(int(0)^(x^(2))cos(t^(2))dt)...

lim_(x rarr0)(int_(0)^(x^(2))cos(t^(2))dt)/(x sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr 0) (int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is :

The value of lim_(x rarr0)(int_0^(x^2) cost^2dt)/(x sin x) is

The value of lim_(x rarr 0) (int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is :

{:(" " Lt),(x rarr 0):} (int_(0)^(x^(2))sec^(2) t dt)/(x sin x) =

lim_(x rarr0)(sin x)/(x^(2))

If lim_(x rarr0)int_(0)^(x)(t^(2)dt)/((x-sin x)sqrt(a+t))=1, then a is equal to

Evaluate :lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(t)dt)/(x^(3))

lim_(x rarr0)(int_(0)^(1)sin t^(2)dt)/(x(1-cos x)) equals

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to