Home
Class 12
MATHS
(dy)/(dx),ify=(xxxsinx)/((x^2+1)...

`(dy)/(dx),ify=(xxxsinx)/((x^2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin x)^2 =x+y find (dy)/(dx) Find (dy)/(dx) if y=sin^(-1)[2^(x+1)/(1+4^x)]

Solve: (dy)/(dx)=(x)/(x^(2)+1)

Ify,=sqrt(((1+cos x)/(2))), provethat (dy)/(dx)=-(1)/(2)(sin x)/(2) If y,=sqrt((1+sin x)/(1-sin x)), prove that cos x(dy)/(dx)=y

Ify={x+sqrt(x^(2)+a^(2))}^(n), provethat (dy)/(dx)=(ny)/(sqrt(x^(2)+a^(2)))+a

(dy)/(dx)=(y^(2)+y+1)/(x^(2)+x+1)

(dy)/(dx)=(y^(2)-y+1)/(x^(2)-x+1)

Fin d (dy)/(dx) ify =tan^(-1)((6x)/(1-5x^(2))) dy,1 Find if y=tan1-5x2

Which one of the following differential equations represents the family of straight lines which are at unit distance from the origin a) (y-x(dy)/(dx))^2=1-((dy)/(dx))^2 b) (y+x(dy)/(dx))^2=1+((dy)/(dx))^2 c)(y-x(dy)/(dx))^2=1+((dy)/(dx))^2 d) (y+x(dy)/(dx))^2=1-((dy)/(dx))^2

The degree and order of differential equatiion (x+y(dy)/(dx))^((1)/(2))=(x sin x((dy)/(dx))^(2)+y)/(((dy)/(dx))^(3)) is :

If y = f(x) and x = g(y), where g is the inverse of f, i.e., g = f^(-1) and if (dy)/(dx) and (dx)/(dy) both exist and (dx)/(dy) ne 0 , show that (dy)/(dx) = (1)/((dx//dy)) . Hence, (1) find (d)/(dx) (tan^(-1)x) (2) If y=sin^(-1)x, -1lexle1, -(pi)/(2)leyle(pi)/(2) , then show that (dy)/(dx)=(1)/(sqrt(1-x^(2))) where |x| lt 1 .