Home
Class 12
MATHS
log(10)^x - log(10) sqrtx=2 logx 10. Fin...

`log_(10)^x - log_(10) sqrtx=2 log_x 10.` Find `x.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10 ) x - log_(10) sqrt(x) = (2)/(log_(10 x)) . The value of x is

Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

If log_(10)x-log_(10)sqrt(x)=2log_(x)10, then possible value of x is given by

If log_(10)x-log_(10)sqrt(x)=2log_(x)10 , then a possible value of x is given by

If 6/5 a^A-3^B=9^C where A=log_a x.log_(10) alog_a 5,B=log_(10) (x/10) and C=log_(100) x+log_4 2 . Find x

If log_10x-log_10sqrtx=2/(log10x), find the value of x.

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.