Home
Class 12
MATHS
If logsqrt(x^2+y^2)=tan^-1(y/x),then dy/...

If `logsqrt(x^2+y^2)=tan^-1(y/x),then dy/dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If logsqrt(x^(2)+y^(2))=tan^(-1)((x)/(y)) , then show that (dy)/(dx)=(y-x)/(y+x) .

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y) .

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x) , then, show that dy/dx=(x+y)/(x-y)

IF [log (x^2 + y^2) = 2 tan^-1 (y/x)] then show that , dy/dx = (x+y) /(x- y)

Find (dy)/(dx) , when: logsqrt(x^(2)+y^(2))=tan^(-1).(y)/(x)