Home
Class 12
MATHS
(vec|axxvecb|^2+(veca.vecb)^2)/(2a^2b^2)...

`(vec|axxvecb|^2+(veca.vecb)^2)/(2a^2b^2)` where `|a|=a` and `|b|=b` is

Promotional Banner

Similar Questions

Explore conceptually related problems

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2 , then |veca| is equal to

Prove that , ( vec(a) xx vec(b))^(2) + (vec (a).vec(b))^(2) = |veca|^(2) |vec(b)|^(2)

Prove that (veca.vecb)^2=a^2b^2-(veca xx vecb)^2

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

Prove that: (veca/a^2-vecb/b^2)^2=((veca-vecb)/(ab))^2

Prove that: (veca/a^2-vecb/b^2)^2=((veca-vecb)/(ab))^2

Show that |vecaxxvecb|=sqrt(vec(a^2)vec(b^2)-(veca*vecb)^2) .