Home
Class 11
MATHS
lim(x->0) (log(1+x+x^2)+log(1-x+x^2))/(s...

`lim_(x->0) (log(1+x+x^2)+log(1-x+x^2))/(secx-cosx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)= (a) -1 (b) 1 (c) 0 (d) 2

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)= (a) -1 (b) 1 (c) 0 (d) 2

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(x->0)log(1+2x)/x

Show that, underset(x to 0) lim (log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)=1

lim_(x rarr0( a) -1)(log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)=

lim_(x rarr 0) (log (1 + x + x^(2))+ log (1 - x - x^(2)))/(sec x - cos x) is equal to :

The value of lim_(xrarr0)(ln(1+2x+4x^(2))+ln(1-2x+4x^(2)))/(secx-cosx) is equal to