Home
Class 12
MATHS
The minimum value of an expression (a+b+...

The minimum value of an expression `(a+b+c+d)(3/(b+c+d)+3/(c+d+a)+3/(d+a+b)+3/(a+b+c))` is, where `a, b, c and d` are positive numbers.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 49392=a^4b^2c^3, find the value of a ,\ b\ a n d\ c , where a ,\ b\ a n d\ c are different positive primes.

If (a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d) , prove that: a : b = c : d .

If (a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d) , then prove that a : b = c : d

If (3a+5b):(3a-5b): :(3c+5d):(3c-5d) , then show that a,b,c and d are in proportion.

The minimum value of (sqrt((A^(2)+A+1)(B^(2)+B+1)(C^(2)+C+1)(D^(2)+D+1)))/(ABCD) is quad (where A,B,C,D) are positive real numbers)

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6