Home
Class 12
MATHS
If a >0 and discriminant of a x^2+2b x+...

If `a >0` and discriminant of `a x^2+2b x+c` is negative, then `|[a,b,ax+b],[b,c,bx+c],[ax+b,bx+c,0]|` is `+v e` b. `(a c-b)^2(a x^2+2b x+c)` c. `-v e` d. `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b],[b,c,bx+c],[ax+b,bx+c,0]| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b],[b,c,bx+c],[ax+b,bx+c,0]| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b],[b,c,bx+c],[ax+b,bx+c,0]| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a gt 0 and discriminant of ax^2+2bx+c is negative, then : Delta=|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,0)| is :

If a gt 0 and discriminant of ax^(2) + 2bx + c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| , is

If a >0 and discriminant of a x^2+2b x+c is negative, then =a b a x+bb c b x+c a x+bb x+c0 is +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a gt 0 and discriminant of ax^(2)+2bx+c=0 is negative, then the value of - |(a,b,ax+b),(b, c,bx+c),(ax+b,bx+c,0)| is -

If a>0 and discriminant of ax^(2)+2bx+c is negative,then det[[a,b,ax+bb,c,bx+c]],+ve b.(ac-b)^(2)(ax^(2)+2bx+c) c.-ve d.0

Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)(a x^2+2b x y+c y^2)