Home
Class 11
MATHS
The number of points where the limit of ...

The number of points where the limit of the function given by `f(x)=[x-1/4] +[x]+[x+1/4]` where [.] denotes the greatest integer function ,`x in (-1,0)` does not exist is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

The range of the function: f(x) = tan^(-1)[x], -pi/4 le x le pi/4 where [.] denotes the greatest integer function:

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Find the inverse of the function: f:Z to Z defined by f(x)=[x+1], where [.] denotes the greatest integer function.

Find the inverse of the function: f:Z to Z defined by f(x)=[x+1], where [.] denotes the greatest integer function.

Find the inverse of the function: f:Z to Z defined by f(x)=[x+1], where [.] denotes the greatest integer function.

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function