Home
Class 11
MATHS
The number of integral values of x in th...

The number of integral values of x in the domain of `f(x) = sqrt(3-x)+sqrt(x-1)+log{x}` , where {} denotes the fractional part of x, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values of x in the domain of f(x)=sqrt(-[x]^2+3[x]-2) is

Number of integral values of x in the domain of f(x)=sqrt(-[x]^(2)+3[x]-2) is

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The domain of f(x)=sqrt(cos(sin x))+sqrt(log_(x){x}) where {x} denotes fractional part of x .

The domain of f(x) = sqrt( 2 {x}^2 - 3 {x} + 1) where {.} denotes the fractional part in [-1,1]

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).