Home
Class 12
MATHS
cos^(2)x(dy)/(dx)+y=tan x(0<=x<(pi)/(2))...

cos^(2)x(dy)/(dx)+y=tan x(0<=x<(pi)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general solution of the differential equations: quad cos^(2)x(dx)/(dy)+y=tan x(0<=x<(pi)/(2))

The integrating factor of cos^(2) x(dy)/(dx) +y = tan x is

cos^(2)x(dy)/(dx) + y = tan x (o le x le (pi)/(2))

cos^(2)x(dy)/(dx) + y = tan x (o le x le (pi)/(2))

cos^(2)x(dy)/(dx) + y = tan x (o le x le (pi)/(2))

An integrating factor of the differential equation cos^(2) x (dy)/(dx) - (tan 2x) y = cos^(4) x is

The solution of cos^(2) x (dy)/(dx) + y = tan x is

If y=x+tan x , show that cos^(2) x. (dy)/(dx)=2-sin^(2)x .