Home
Class 11
MATHS
If x=log(2a) a,y=log(3a) 2a and z=log(4...

If `x=log_(2a) a,y=log_(3a) 2a ` and `z=log_(4a) 3a` then prove that `xyz+1=2yz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = log_(2a)a, y = log_(3a)2a , z = log_(4a)3a , then show that xyz + 1 = 2yz .

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,prove that 1+x y z=2y z

If x = log_(2a)^(a) , y = log_(3a)^(2a) and z = log_(4a)^(3a) show that xyz = 2yz - 1.

If x=(log)_(2a)a,y=(log)_(3a)2a,z=(log)_(4a)3a, prove that 1+xyz=2yz

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

IF x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a , then the value of xyz + 1 is

If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx

If log_(2a)a=X,log_(3a)2a=y, and log_(4a)3a= z,then xyz-2yz is equal to