Home
Class 11
MATHS
If (sin^-1x+sin^-1w)(sin^-1y+sin^-1z)=pi...

If `(sin^-1x+sin^-1w)(sin^-1y+sin^-1z)=pi^2`, then

Text Solution

Verified by Experts

given `pi^2 = pi xx pi = - pi xx - pi`
`(sin^-1 x + sin^-1 w)(sin^-1 y + sin^-1 z) = pi xx pi `
max value of `sin^-1 x + sin^-1 w = sin^-1 1 + sin^-1 1 = pi/2 + pi/2 = pi`
max `(sin^-1 y + sin^-1z) = -pi/2 - pi/2 = -pi`
`pi^2, x=1, w=1, y=1, z=1`
`D= |(1,1),(1,1)| = 0`
when `-pi^2 , x=y=z=w=-1`
`D= |(-1^(n1), -1^(n2)), (-1^(n3), -1^(n4))|`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N)

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N) has a maximum value of 2 has a maximum value of 0 16 different D are possible has a minimum value of -2

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N) has a maximum value of 2 has a maximum value of 0 16 different D are possible has a minimum value of -2

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N) has a maximum value of 2 different D are possible has a minimum value of -2

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2) , then D=|(x^(N_(1)),y^(N_(2))),(z^(N_(3)),w^(N_(4)))|(N_(1),N_(2),N_(3),N_(4)inN)

If ^( If )(sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2) then D=det[[x^(N_(1)),y^(N_(3))z^(N_(3)),y^(N_(3))]](N_(1),N_(2),N_(3),N_(4)in N) has a maximum value of 2 has a maximum value of 016 different D are possible has a minimum value of -2

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2pi , then find the value of x^2+y^2+z^2+t^2 .

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2 pi then find the value of x^(2)+y^(2)+z^(2)+t^(2)

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to