Home
Class 12
MATHS
The value of the determinant |{:(x^(2),1...

The value of the determinant `|{:(x^(2),1,y^(2)+z^(2)),(y^(2),1,z^(2)+x^(2)),(z^(2),1,x^(2)+y^(2)):}|` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that xyz = -1 , the value of the determinant |(x,x^(2),1 +x^(3)),(y,y^(2),1 + y^(3)),(z,z^(2),1 +z^(3))| is

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2)) ?

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

The value of Delta = |((a^(x) + a^(-x))^(2),(a^(x) -a^(-x))^(2),1),((a^(y) + a^(-y))^(2),(a^(y) -a^(-y))^(2),1),((a^(z) + a^(-z))^(2),(a^(z) - a^(-z))^(2),1)| , is

The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y^(2)-1/z^(2))(1/z^(2)-1/x^(2))) is