Home
Class 12
MATHS
" affer "F(x)=[[cos x,-sin x,0],[sin x,c...

" affer "F(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]]-:pi

Promotional Banner

Similar Questions

Explore conceptually related problems

find the value for x F(x)=|[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]|

If F (x) = [[cos x,-sin x,0],[sin x, cos x, 0],[0,0,1], then show that F(x) F(y)= F (x+y).

Let f(x)= [[cos x, -sin x, 0],[sin x, cos x, 0],[0,0,1]] ,Show that f (x) f(y)= f(x+y) .

If f(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]] , show that f(x).f(y)=f(x+y)

F(x) =[[cos x, -sin x, 0],[ sin x, cos x, 0],[ 0, 0, 1]] Show that F(x) F(y)=F(x+y)

If F(x)=[[cos x,-sin x,0sin x,cos x,00,0,1]], then which of

If A= [[cos x,sin x,0],[-sin x,cos x,0],[0,0,1]]=f(x) then A^-1=

Given that F(x)=[{:(,cos x,-sin x,0),(,sin x,cos x,0),(,0,0,1):}]."If"in R Then for what values of y, F(x+y)=F(x)F(y)

Inverse of f(x) = [(cos x , sin x, 0),(-sin x, cos x, 0),(0,0,1)] is

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)