Home
Class 12
MATHS
If y=log(x+1/x), prove that (dy)/(dx)=(x...

If `y=log(x+1/x),` prove that `(dy)/(dx)=(x-1)/(2x(x+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

if y=log x^(x) prove that (dy)/(dx)=1+log x

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove that (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove that (dy)/(dx)=log((x-1)/(1+x))

If =(x-1)log(x-1)-(x+1)log(x+1) prove that (dy)/(dx)=log((x-1)/(1+x))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))