Home
Class 12
MATHS
[17(0),tan^(-1)(x-y)/(1+xy)+tan^(-1)(y-z...

[17_(0),tan^(-1)(x-y)/(1+xy)+tan^(-1)(y-z)/(1+yz)+tan^(-1)(z-x)/(1+zx)],[,=tan^(-1)(x^(2)-y^(2))/(1+x^(2)y^(2))+tan^(-1)(y^(2)-z^(2))/(1+y^(2)z^(2))+tan^(-1)(z^(2)-x^(2))/(1+z^(2)x^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((x-y)/(1+xy))+tan^(-1)((y-z)/(1+yz))+tan^(-1)((z-x)/(1+zx))=tan^(-1)((x^(r)-y^(r))/(1+x^(r)y^(r)))+tan^(-1)((y^(r)-z^(r))/(1+y^(r)z^(r)))+tan^(-1)((z^(r)-x^(r))/(1+z^(r)x^(r)))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

tan^(-1)((yz)/(xsqrt(x^(2)+y^(2)+z^(2))))+tan^(-1)((zx)/(ysqrt(x^(2)+y^(2)+z^(2)))) +tan^(-1)((xy)/(zsqrt(x^(2)+y^(2)+z^(2))))=

" (a) "tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)(x+y+z-xyz)/(1-xy-yz-zx)

"Tan"^(-1)(yz)/(xsqrt(x^(2)+y^(2)+z^(2)))+"Tan"^(-1)(zx)/(ysqrt(x^(2)+y^(2)+z^(2)))+"Tan"^(-1)(xy)/(zsqrt(x^(2)+y^(2)+z^(2)))=

If Tan^(-1)x+Tan^(-1)y+Tan^(-1)z=(pi)/2 and (x-y)^(2)+(y-z)^(2)+(z-x)^(2)=0 then x^(2)+y^(2)+z^(2)=

If x^(2)+y^(2)+z^(2)=r^(2) , then Tan^(-1)((xy)/(zr))+Tan^(-1)((yz)/(xr))+Tan^(-1)((xz)/(yr))=

Prove that tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)((x+y+z-xyz)/(1-xy-yz-zx))