Home
Class 14
MATHS
(dy)/(dx)=(1)/(sin^(4)x+cos^(4)x)...

(dy)/(dx)=(1)/(sin^(4)x+cos^(4)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)=1/(sin^4x+cos^4x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^x+e^(-x))

Solve the following differential equation: (dy)/(dx)=sin^(3)x cos^(4)x+x sqrt(x+1)

Solution of differential equation sin y*(dy)/(dx)=(1)/(x)cos y=x^(4)cos^(2)y is

(dy)/(dx)=sin^(8)x cos x

(dy)/(dx)=(cos^(4)y)/(sin^(4)x+cos^(4)x)

Solution of differential equation sin y*(dy)/(dx)+(1)/(x)cos y=x^(4)cos^(2)y is

Find : int(1)/(sin^(4)x+cos^(4)x)dx .

Solve: (dy)/(dx)=sin^3x \ cos^4x+x\ sqrt(x+1)

Evaluate: int(1)/(sin^(4)x+cos^(4)x)dx