Home
Class 11
MATHS
f(x)=sqrt([sin2x]-[cos2x])," where Ideno...

f(x)=sqrt([sin2x]-[cos2x])," where Idenotes the greatest integer function."

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt([sin2x]-[cos2x]) (where II denotes the greatest integer function then the range of f(x) will be

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is