Home
Class 11
MATHS
If log2(4^(x+1)+4)log2(4^x+1)=log2(8), t...

If `log_2(4^(x+1)+4)log_2(4^x+1)=log_2(8)`, then `x` equals what

Promotional Banner

Similar Questions

Explore conceptually related problems

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

If (log_2(4x^2-x-1))/(log_2(x^2+1))gt1 , then x lies in the interval

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

Solve log_2(4^(x+1)+4).log_2(4^x+1)=log_(1//sqrt2)(1/sqrt8) .

If log_(8)(log_(4)(log_(2)x))=0 then x^(-(2)/(3)) equals

If x y^2=4a n d(log)_3((log)_2x)+(log)_(1/3)((log)_(1/2)y)=1 ,then x equals (a) 4 (b) 8 (c) 16 (d) 64

log_(2)(4^(x)+4)=log_(2)2^(x)+log_(2)(2^(x+1)-3)