Home
Class 11
MATHS
" (iii) "x^(3log(2)x-(2)/(3)log(0)x)=100...

" (iii) "x^(3log_(2)x-(2)/(3)log_(0)x)=100root(3)(10)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_1and \ x_2 are the solution of the equation x^(3log_10^3x-2/3log_(10)x)=100 root(3)10 then- a. x1x2=1 b. x1*x2=x1+x2 c. log_(x2)x1=-1 d. log(x_1*x_2)=0

If x_1and \ x_2 are the solution of the equation x^(3log_10^3x-2/3log_(10)x)=100 root(3)10 then- a. x1x2=1 b. x1*x2=x1+x2 c. log_(x2)x1=-1 d. log(x_1*x_2)=0

x^(3log_(10)^(3)x)-(2)/(3)log_(10)x=100(10)^((3)/(2))

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

Find the value of x satisfying the equation ((log)_3 root(3)(3x)+(log)_x root(3)(3x))dot(log)_3x^3+((log)_3 root(3)(x/3)+(log)_xroot(3)(3/x))dot(log)_3x^3=2

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .