Home
Class 9
MATHS
" 7.Show that: "|[a^(2),2ab,b^(2)],[b^(2...

" 7.Show that: "|[a^(2),2ab,b^(2)],[b^(2),a^(2),2ab],[2ab,b^(2),a^(2)]|=(a^(3)+b^(2))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that det[[a^(2),2ab,b^(2)b^(2),a^(2),2ab2ab,b^(2),a^(2)]]=(a^(3)+b^(3))^(2)

Using properties of determinant : Prove that |(a^(2), 2ab, b^(2)),(b^(2),a^(2),2ab),(2ab,b^(2),a^(2))| = (a^(3) + b^(3))^(2)

Prove: |[a^2, 2ab,b^2],[b^2,a^2, 2ab],[2ab,b^2,a^2]|=(a^3+b^3)^2

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Using properties of determinants prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2)):}|=-(a^(3)+b^(3))^(2) .

Without expanding, prove the following |(a^2,2ab,b^2),(b^2,a^2,2ab),(2ab,b^2,a^2)|=(a^3+b^3)^2

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

|[2ab,a^2,b^2] , [a^2,b^2,2ab] , [b^2,2ab,a^2]|=-(a^3+b^3)^2

Prove that |[2ab,a^2,b^2],[a^2,b^2,2ab],[b^2,2ab,a^2]|=-(a^3+b^3)^2 .