Home
Class 12
MATHS
sin^(-1)x=sin^(-1)((4x)/(5))+sin^(-1)((3...

sin^(-1)x=sin^(-1)((4x)/(5))+sin^(-1)((3x)/(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy sin^(-1)((3x)/(5))+sin^(-1)((4x)/(5))=sin^(-1)x is equal to :

The total number of solutions of the equation sin^(-1)((3)/(5)x)+sin^(-1)((4)/(5)x)=sin^(-1)x

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)

(sin^(-1)(3x))/(5)+(sin^(-1)(4x))/(5)=sin^(-1)x, then roots of the equation are- a.0 b.1 c.-1 d.-2

sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x , then roots of the equation are- a. 0 b. 1 c. -1\ d. -2

Find the value of x is ,if Sin[Sin^(-1)((x)/(5))+Cos^(-1)((3)/(5))]=1

Find the value of x is, if Sin[Sin^(-1)((x)/(5))+Cos^(-1)((3)/(5))]=1

Find the value of x ,if Sin[Sin^(-1)((x)/(5))+Cos^(-1)((3)/(5))]=1