Home
Class 12
MATHS
" 8.Show that "f(x)={[(2x-1)," if "x<2;]...

" 8.Show that "f(x)={[(2x-1)," if "x<2;],[(3x)/(2)," if "x>=2]

Promotional Banner

Similar Questions

Explore conceptually related problems

show that f(x) ={{:( (2x-1)",",if , x lt2),( (3x)/2",,if x ge 2):} is continuous

Show that f(x)={[5-x,,x>=2],[x+1,,x<2] is continuous at x = 2 but not differentiable at that point.

If f(x) = 2/(2-x) then show that f(f(f(x))) = (2(x-1))/x

If f(x)=(3x+2)/(4x-3) show that f(x)=f^(-1)(x)

If f(x) = (1)/(2x-1) , x ne (1)/(2) , then show that : f(f(x)) = (2x-1)/(3-2x) , x ne (3)/(2)

f(x)=(2x+3)/(3x+2), then show that f(x)*f((1)/(x))=1. if f(x)=4, then show that f(x+1)-f(x)=f(x)

If f(x)=1+x+x^(2)+..... for |x|lt1 then show that f^(-1)(x)=(x-1)/(x)

If f(x) = 1 + x + x^(2) + …… for |x| lt 1 then show that f^(-1)(x) = (x-1)/(x) .

If f (x) = 1/(2x+1), x ne -1/2 , then show that , f(f (x)) = (2x+1)/(2x+3), x ne -3/2 .

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot