Home
Class 12
MATHS
[" (ii) If "sin^(-1)x+sin^(-1)y+sin^(-1)...

[" (ii) If "sin^(-1)x+sin^(-1)y+sin^(-1)z=pi" then show that "x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=],[2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

"if " sin^(-1) x +sin ^(-1) y+sin ^(-1) z=pi show that , x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , then prove that x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))

If Sin^(-1)x + Sin^(-1)y + Sin^(-1)z = pi , then prove that x^(4) + y^(4) + z^(4) + 4x^(2)y^(2)z^(2) = 2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) .

If sin^(-1)x +sin^(-1)y+sin^(-1)z=pi then x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, then x^(4)+y^(2)+z^(4)+4x^(2)y^(2)z^(2)=K(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) where K is equal to 1( b) 2(c)4(d) none of these