Home
Class 11
MATHS
If y = ( sin x)^(sinx)^((sinx)....oo), T...

` If y = ( sin x)^(sinx)^((sinx)....oo)`, Then prove that `dy/dx = (y^2 cot x)/(1-y log sin x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If y=(sin x)^(sin x)sim((sin x)dot oo)), prove that (dy)/(dx)=(y^(2)cot x)/((1-y log sin x))

If y=(sinx)^((sinx)^((sinx)...oo))," prove that "(dy)/(dx)=(y^(2)cotx)/((1-ylog sinx)).

If y=(sinx)^((sinx)^((sinx)^(....oo))) show that, (dy)/(dx)=(y^(2)cot x)/(1-ylog(sinx))

If y = (sin x) ^((sin x) ^((sin x) ^(...oo))), then (dy)/(dx)=

If y=(sin x)^((sin x))srove that (dy)/(dx)=(y^(2)cos x)/((1-y log sin x))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))