Home
Class 11
MATHS
If y = x^(x ^(x^(x ^(x.... oo) then prov...

If `y = x^(x ^(x^(x ^(x.... oo)` then prove that ` x dy/dx = y^2/(1- y logx )`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y =x+(1)/(x +(1)/(x+.....oo)) then prove that xdy/dx =y/(2y -x).

If y=sqrt(x)^(sqrt(x)^(sqrtx...oo)) then prove that dy/dx=(y^2)/(x(2-y log x )).

Differentiate the following w.r.t.x. y = x^(x^(x^( oo))) , prove that x (dy)/(dx) = (y^2)/(1 - y log x)

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If y=(cos x)^((cosx)^((cos x )...oo)) then prove that dy/dx=(y^2 tan x)/(y log (cosx)-1).