Home
Class 12
MATHS
U. 5 Q.45 Find the minimum height of the...

U. 5 Q.45 Find the minimum height of the obstacle so that the sphere can stay in equilibrium. R OR b. 1 + sin e a. 1+cos e C. R(1-sin O) di R(1-сos e)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivativ of the function w.r.to x sin ^-1 (e ^(x) )

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

If z= re^(i theta ) , " then " |e^(iz) | is equal to a)1 b) e^(2r) sin theta c) e^( r sin theta) d) e^(-r sin theta)

Find the derivative of e^(sin^(-1)x) w.r.t.x.

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

Two concentric spherical shells of radius R_(1) and R_(2) (R_(2) gt R_(1)) are having uniformly distributed charges Q_(1) and Q_(2) respectively. Find out potential (i) at point (ii) at surface of smaller shell (i.e. at point B) (iii) at surface of larger shell (i.e. at point C) (iv) at r le R_(1) (v) at R_(1) le r le R_(2) (vi) at r ge R_(2)

Evaluate the integerals. int e ^(x) sin e ^(x) dx on R.

(r_1)/( R ) =sin A + sin B + sin C then the triangles is