Home
Class 14
MATHS
int(0)^(3)(m^(2)dm)/(2m^(2)-10n+25)...

int_(0)^(3)(m^(2)dm)/(2m^(2)-10n+25)

Promotional Banner

Similar Questions

Explore conceptually related problems

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . The integral int_(0)^(pi//2)cos^(2m)theta sin^(2n) theta d theta is equal to

Evaluate for m in N , int(x^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If I_(m;n)=int_(0)^((pi)/(2))sin^(m)x cos^(n)xdx then show that I_(m;n)=(m-1)/(m+n)I_(m-2;n) and find I_(m;n) in terms of different combinations of m and n.

If m and n are positive integers and m ne n , show : int_(0)^(pi)cos^(2)mxdx={{:((pi)/(2),"when",mne0),(pi,"when",m=0):}

If the expression x^(2)-(5m-2)x+(4m^(2)+10m+25)=0 can be expressed as aperfect square then value of m is