Home
Class 12
MATHS
If f:(1,2)->R satisfies the inequality (...

If `f:(1,2)->R` satisfies the inequality `(cos(2x-4)-33)/2 lt f(x) lt (x^2|4x-8|) (x-2)`, `AA x in(1,2)`, then `lim_(x->2^-) f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|4x-8|)/(x-2)AAx in (1,2)dot Then find lim_(x->2^-)f(x)dot

Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|4x-8|)/(x-2)AAx in (1,2)dot Then find lim_(x->2^-)f(x)dot

Let f:(1,2)vecR satisfies the inequality (cos(2x-4)-33)/2ltf(x)lt(x^2|4x-8|)/(x-2)AAx in (1,2)dot Then find lim_(x->2^-)f(x)dot

Let f:(1,2)toR satisfy the inequality (cos(2x-4)-33)/(2)ltf(x)lt(x^(2)|4x-8|)/(x-2)AAx in(1,2). Then find lim_(xto2^(-)) f(x).

Let f:(1,2)rarr R satisfies the inequality (cos(2x-4)-33)/(2)

if f(2)=4,f'(2)=1 then lim_(x->2){xf(2)-2f(x)}/(x-2)

f'(sin^(2)x)lt f'(cos^(2)x) for x in

f'(sin^(2)x)lt f'(cos^(2)x) for x in

f'(sin^(2)x)lt f'(cos^(2)x) for x in

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is