Home
Class 11
MATHS
Let f(x)=ln((1-x)/(1+x)) . Find x,y for ...

Let `f(x)=ln((1-x)/(1+x))` . Find x,y for which `f(x)+f(y)=f((x+y)/(1+xy))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = log_e ((1+x)/(1-x)) , prove that: f (x) +f (y)= f ((x+y)/(1+xy)) .

If f(x) = log_e ((1-x)/(1+x)) , then prove that f(x) + f(y) = f((x + y)/(1 + xy))

If , f(x)="log"((1+x)/(1-x)) ,show that f(x)+f(y)=f((x+y)/(1+xy))

If f(x) = (x-1)/(x+1) , then prove that (f(x)-f(y))/(1+f(x)f(y))=(x-y)/(1+xy) .

Find y=(f(f(x))) if f(x)=1/(1-x)

If f(x)=log {(1+x)/(1-x)} , then f(x)+f(y) is

If f (x) = cos (log_e x) , find the value of : f(x) f(y)-1/2[f(x/y)+f(xy)] .

Let f:R^(+)rarr R be a function which satisfies f(x)f(y)=f(xy)+2((1)/(x)+(1)/(y)+1) for x,y>0. Then find f(x)

Let f: R^+ ->R be a function which satisfies f(x)dotf(y)=f(x y)+2(1/x+1/y+1) for x , y > 0. Then find f(x)dot