Home
Class 10
MATHS
(a)/(ax-1)+(b)/(bx-1)=a+b,quad x!=(1)/(a...

(a)/(ax-1)+(b)/(bx-1)=a+b,quad x!=(1)/(a),(1)/(b)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:(a)/(ax-1)+(b)/(bx-1)=a+b;x!=(1)/(a),(1)/(b)

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

Solve each of the following quadratic equations: (a)/((ax-1))+(b)/((bx-1))=(a+b),xne(1)/(a),(1)/(b)

Solve: a/(ax-1)+b/(bx-1)=a+b (x!=1/a,1/b) .

Solve for x: a/(ax-1)+b/(bx-1)=a+b; x!= 1/a, 1/b

Solve : (a)/(ax-1)+(b)/(bx-1)=a+b , where a+b ne 0, ab ne 0 .

The value of the expression (1-ax)(1+ax)^(-1)(1+bx)^((1)/(2))(1-bx)^(-(1)/(2)) at x=a^(-1)(2(a)/(b)-1)^((1)/(2)), is: a.dependent on both a and b b.1 c.;-1

The value of the expression (1-ax)(1+ax)^(-1)(1+bx)^((1)/(2))(1-bx)^(-(1)/(2)) at x=a^(-1)(2(a)/(b)-1)^((1)/(2))

Solve the following system of equations by method of cross-multiplication: bx+cy=a+b,quad and ax((1)/(a-b)-(1)/(a+b))+cy((1)/(b-a)-(1)/(b+a))=(2a)/(a+b)

If the roots of the equation (x^(2)-bx)/(ax-c)=(m-1)/(m+1) are equal to opposite sign,then the value of m will be (a-b)/(a+b) b.(b-a)/(a+b) c.(a+b)/(a-b) d.(b+a)/(b-a)