Home
Class 11
MATHS
[" Let "f(x)" be a quadratic function su...

[" Let "f(x)" be a quadratic function such that "f(0)=f(1)=0&f(2)=1," then "lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x))" is "],[[" (A) "(pi)/(2)," (B) "pi]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

-If f(x) is a quadratic expression such that f(-2)=f(2)=0 and f(1)=6 then lim_(x rarr0)(sqrt(f(x))-2sqrt(2))/(ln(cos x)) is equal to

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

f((9)/(2))=(2)/(9), thenthevalueof lim_(x rarr0)f((1-cos3x)/(x^(2)))

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))