Home
Class 11
MATHS
[" Let "f(x)=(tan x)/(x)" ,then the valu...

[" Let "f(x)=(tan x)/(x)" ,then the value of "lim_(x rarr0)([f(x)]+x^(2))^(-1)" is equalle (where "[1,1]" denotes great "],[[" 4) "e^(-3)," function and fractional part functions respectively)- ",," (D) non-existem "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr0)((tan x)/(x))^(1/x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr 0) ((x)/(tan^(-1) 2x)) is :

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

The value of lim_(x rarr0)(e-(1+x)^((1)/(x)))/(tan x) is

lim_(x rarr0)(1+x)^((1)/(x))=e

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :