Home
Class 12
MATHS
[" 13."(yfa)/(dx)" in and "(x)/(a)" and ...

[" 13."(yfa)/(dx)" in and "(x)/(a)" and "(a)/(b)" an fors anform for "],[[[1,omega,omega^(2)],[omega,omega^(2),1],[omega^(2),1,omega]]+[[omega,omega^(2),1],[omega^(2),1,omega],[omega,omega^(2),1]]}[[1],[omega],[omega^(2)]]=[[0],[0],[0]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]] =

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]

Solve the following : [[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]] =0

find determinant of |(1, omega, omega^(2)),(omega, omega^(2),1),(omega^(2),1,omega)|=

Find the value of : |(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)|

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]