Home
Class 12
MATHS
Let L = lim(x rarr 0) ( a - sqrt( a^2 - ...

Let L = `lim_(x rarr 0) ( a - sqrt( a^2 - x^2) - x^2/4)/x^4`, a>0.If L is finite, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let L= lim_(x rarr0)(a-sqrt(a^2-x^2)-x^2/4)/x^4, a gt 0 . If L is finite, then

Let L=lim_(x rarr0)(a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a>0 .If L is finite,then (a)a=2( b) a=1(c)L=(1)/(64) (d) L=(1)/(32)

Let L=lim_ (x to 0) (a-sqrt(a^2-x^2)-(x^2)/4)/(x^4), a > 0. If L is finite ,then (a). a=2 (b) a=1 L=1/(64) (d) L=1/(32)

Let L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0 . If L is finite, then

Lt_(x to 0) (a- sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),a gt 0 . If L si finite then

Let L=lim_(xrarr0)(b-sqrt(b^(2)+x^(2))-(x^(2))/(4))/(x^(4)), b gt 0 . If L is finite, then

Let L=lim_(x->0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0 . If L is finite ,then (a) a=2 (b) a=1 (c) L=1/(64) (d) L=1/(32)