Home
Class 12
MATHS
A:lf argument of z1=pi/3, argument of ...

A:lf argument of `z_1=pi/3`, argument of `z_2=pi/4` then argument of `z_1z_2` is `7pi/12 R: Arg (z_1,z_2)- Arg z_1, + Arg z_2`

Promotional Banner

Similar Questions

Explore conceptually related problems

A : If argument of z_1=pi//3 , argument of z_2=pi//4 then argument of z_1z_2" is " 7pi//12 R : Arg (z_1z_2)=Arg z_1+Argz_2

If 2pi//3 and pi//6 are the arguments of barz_1 and z_2 then value of arg (z_1//z_2) is

If pi//5 and pi//3 are the arguments of barz_1 and z_2 then the value of arg (z_1)+arg (z_2) is

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}

If pi//3 and pi//4 are the arguments of z_1 and barz_2 then the value of arg (z_1.z_2)

If arg (z_(1))=(17pi)/18 and arg (z_(2))=(7pi)/18, find the principal argument of z_(1)z_(2) and (z_(1)//z_(2)).

If arg (z_(1))=(17pi)/18 and arg (z_(2))=(7pi)/18, find the principal argument of z_(1)z_(2) and (z_(1)//z_(2)).

If arg (z_(1))=(17pi)/18 and arg (z_(2))=(7pi)/18, find the principal argument of z_(1)z_(2) and (z_(1)//z_(2)).

If arg (z_(1))=(17pi)/18 and arg (z_(2))=(7pi)/18, find the principal argument of z_(1)z_(2) and (z_(1)//z_(2)).