Home
Class 14
MATHS
[2sqrt(50)+sqrt(18)-sqrt(72)" and "477],...

[2sqrt(50)+sqrt(18)-sqrt(72)" and "477],[sqrt(2)=1.414)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(18)+sqrt(12) , if sqrt(12)=1.414 and sqrt(3)=1.732 . The following are the steps involved in solving the above problem. Arrange that in sequential order. (A) 4.242+3.464=7.706 (B) 3sqrt(2)+2sqrt(3) (C) sqrt(18)+sqrt(12)=sqrt(3^(2)xx2)+sqrt(2^(2)xx3) (D) 3(1.414)+2(1.732)

Write the lowest rationalising factor of : (i) 5sqrt(2)" (ii) "sqrt(18)-sqrt(50)" (iii) "(2sqrt(2)+2sqrt(3))

Given that sqrt(3)=1.732, the value of (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is (a) 1.414 (b) 1.732( c) 2.551( d )4.899

Rationalise the denominator of (sqrt(6)+sqrt(3))/(sqrt(6)-sqrt(3)) and find its value of sqrt(2)=1.414

Simplify : sqrt(18)/(5sqrt(18)+3sqrt(72)-2sqrt(162))