Home
Class 12
MATHS
Find determinant (A)=|(a^2 + 1,b^2,c^2)...

Find determinant `(A)=|(a^2 + 1,b^2,c^2),(a^2,b^2+1,c^2),(a^2,b^2,c^2+1)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

Using properties of determinant show that : |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|=4|(a^2,b^2,c^2),(a,b,c),(1,1,1)|

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|= then

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|=0 then

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|= then

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|