Home
Class 12
MATHS
Two systems of rectangular axes have the...

Two systems of rectangular axes have the same origin. If a plane cuts them at distances `a ,b ,ca n da^(prime),b^(prime),c^(prime)` respectively, prove that `1/(a^2)+1/(b^2)+1/(c^2)=1/(a^('2))+1/(b^('2))+1/(c^('2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a ,b ,c and a^(prime),b^(prime),c^(prime) respectively, prove that 1/(a^2)+1/(b^2)+1/(c^2)=1/(a^('2))+1/(b^('2))+1/(c^('2))

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, c and a^(1),b^(1),c^(1) from the origin, then

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a ,b ,c and a^prime ,b^(prime),c ' from the origin, then a. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0 b. 1/(a^2)-1/(b^2)-1/(c^2)+1/(a^('2))-1/(b^('2))-1/(c^('2))=0 c. 1/(a^2)+1/(b^2)+1/(c^2)-1/(a^('2))-1/(b^('2))-1/(c^('2))=0 d. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a ,b ,c and a^prime ,b^(prime),c ' from the origin, then a. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0 b. 1/(a^2)-1/(b^2)-1/(c^2)+1/(a^('2))-1/(b^('2))-1/(c^('2))=0 c. 1/(a^2)+1/(b^2)+1/(c^2)-1/(a^('2))-1/(b^('2))-1/(c^('2))=0 d. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a ,b ,c and a^prime ,b^(prime),c ' from the origin, then a. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0 b. 1/(a^2)-1/(b^2)-1/(c^2)+1/(a^('2))-1/(b^('2))-1/(c^('2))=0 c. 1/(a^2)+1/(b^2)+1/(c^2)-1/(a^('2))-1/(b^('2))-1/(c^('2))=0 d. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a ,b ,cand a^prime ,b^(prime),c ' from the origin, then a. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0 b. 1/(a^2)-1/(b^2)-1/(c^2)+1/(a^('2))-1/(b^('2))-1/(c^('2))=0 c. 1/(a^2)+1/(b^2)+1/(c^2)-1/(a^('2))-1/(b^('2))-1/(c^('2))=0 d. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0

Two system of rectangular axes have the same origin. IF a plane cuts them at distances a,b,c and a',b',c' from the origin then

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b,c and a',b',c' from the origin, then :