Home
Class 12
MATHS
a1, a2, a3 …..a9 are in GP where a1 lt 0...

`a_1, a_2, a_3 …..a_9` are in GP where `a_1 lt 0, a_1 + a_2 = 4, a_3 + a_4 = 16`, if `sum_(i=1)^9 a_i = 4 lambda`then `lambda` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

Let a_1,a_2,a_3,.... are in GP. If a_n>a_m when n>m and a_1+a_n=66 while a_2*a_(n-1)=128 and sum_(i=1)^n a_i=126 , find the value of n .

Three distinct numbers a_1 , a_2, a_3 are in increasing G.P. a_1^2 + a_2^2 + a_3^2 = 364 and a_1 + a_2 + a_3 = 26 then the value of a_10 if a_n is the n^(th) term of the given G.P. is:

a_1,a_2, a_3, ,a_n are in A.P. and a_1+a_3+a_5+a_7+a_9=20 then a_5 is 2 2. 7 3. 3 4. 4 5. 5

Let a_1, a_2 , a_3 and a_4 be in AP. If a_1 + a_4 =10 and a_2. a_3 =24 , then the least term of the AP, is

If a_1,a_2,a_3,a_4 are in HP , then 1/(a_1a_4)sum_(r=1)^3a_r a_(r+1) is root of :