Home
Class 12
MATHS
xy+y^(2)=tan x+y...

xy+y^(2)=tan x+y

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if xy^2 + y^2 = tan x + y

y^(2)+xy=tan(x+y) then find (dy)/(dx)=?

xy = tan (x + y)

(sin x + sin y) / (sin x-sin y) = tan ((x + y) / (2)) * cot ((xy) / (2))

If x:y::5:2, then (x ^(2) - xy + y ^(2))/( x ^(2) + xy + y ^(2)) = ?

tan ^ (- 1) ((1) / (x + y)) + tan ^ (- 1) ((y) / (x ^ (2) + xy + 1)) = cot ^ (- 1) x

If cos ^ (- 1) x + cos ^ (- 1) y = (pi) / (2), tan ^ (- 1) x-tan ^ (- 1) y = 0 then x ^ (2) + xy + y ^ (2) =

If xy =1 +a^(2) , show that tan ^(-1) ""(1)/(a+x) +tan^-1"" 1/(a+y) = tan ^(-1) ""(1)/(a) , ( x+ y + 2a) ne 0

If xy=1+a^(2) then show that tan^(-1)((1)/(a+x))+tan^(-1)((1)/(a+y))=tan^(-1)((1)/(a)),x+y+2a!=0