Home
Class 12
MATHS
[" 67.Find the equation of plane passing...

[" 67.Find the equation of plane passing "],[" through point "P(1,1,1)" and "],[" containing the line "],[vec r=(-3hat i+hat j+5hat k)+lambda(3hat i-hat j-5hat k)],[vec r=(-3hat i+hat j+5hat k)+lambda(3hat i-hat j-5hat k)],[" Also,show that plane contains the "],[" line "],[vec r=(-hat i+2hat j+5hat k)+mu(hat i-2hat j-5hat k)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the plane passing through the point (1,1,1) and containing the line vec r=(-3hat i+hat j+5hat k+)lambda(3hat i-hat j-5hat k) Also,show that the plane contains the lines vec r=(-hat i+2hat j+5hat k)+lambda(hat i-2hat j-5hat k)

Find the equation of the plane passing through the point (1,1,1) and containing the line vec r=(-3hat i+hat j+5hat k)+lambda(3hat i-hat j5hat k) Also,show that the plane contains the lines vec r=(-hat i+2hat j+5hat k)+lambda(hat i2hat j5hat k)

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

Equation of the plane containing the lines vec r=(hat i-2hat j+hat k)+t(hat i+2hat j-hat k)vec r=(hat i+2hat j-hat k)+s(hat i+hat j+3hat k) is

Find the vector and cartesian equation of a plane containing the two lines vec r=(2hat i+hat j-3hat k)+lambda(hat i+2hat j+5hat k) and vec r=(3hat i+3hat j+2hat k)+mu(3hat i-2hat j+5hat k) Also,show that the line vec r=(2hat i+5hat j+2hat k)+P(3hat i-2hat j+5hat k) lies in the plane.

Find the shortest distance between the lines vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Find the equation of the plane passing through the point P(1,1,1) and containing the line vec(r) = (-3 hat(i) + hat(j) + 5 hat(k)) + lambda (3 hat(i) - hat(j) - 5 hat(k)) . Also, show that the plane contains the line vec(r) = (- hat(i) + 2 hat(j) + 5hat(k)) + mu (hat(i) - 2 hat(j) - 5 hat(k)) .

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)