Home
Class 11
MATHS
[" (1) "2sqrt(2)],[" Let "f:R rarr R" be...

[" (1) "2sqrt(2)],[" Let "f:R rarr R" be a differentiable function satisfying "f'(3)+f'(2)=0" ."],[" Then "lim_(x rarr0)((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^((1)/(x))" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

f'(3)+f'(2)=0 Find the lim_(x rarr0)((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^((1)/(x))

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

Let f:(0, oo)rarr(0, oo) be a differentiable function such that f(1)=e and lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(2)(t))/(t-x)=0 . If f(x)=1 , then x is equal to :

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f'(0)=3 then lim_(x rarr0)(x^(2))/(f(x^(2))-6f(4x^(2))+5f(7x^(2))=)