Home
Class 10
MATHS
" In and a be two positive integers grea...

" In and a be two positive integers greater than "1." If "lim_(x rarr0)((e^(cos(x^(2)))-e)/(alpha^(m)))=-((e)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Let m and n be two positive integers greater than 1. If lim_(alpha rarr0)(e^(cos alpha^(n))-e)/(alpha^(m))=-((e)/(2)) then the value of (m)/(n) is

lim_(x rarr0)((e^(3x)-e^(2x))/(x))

lim_(x rarr0)(e^(cos x^(n))-e)/(x^(m))=-(e)/(2) then find (4m)/(5n)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(2x)+e^(x)-2)/(x)

Let m and n be the two positive integers greater than 1 . If underset( alpha rarr 0 ) ( "lim")((e^(cos(alpha^(n)))-e)/(alpha^(m))) = -((e )/( 2)) then the value of ( m )/( n ) is

lim_(x rarr0^(-))((e^((1)/(x)))/(x))