Home
Class 12
MATHS
[52." For all real numbers "x,y" and "z,...

[52." For all real numbers "x,y" and "z," the determinant ",,,],[hline52." For all real numbers ",xy-xz,y],[2x+z+1,xy-xz+yz-z^(2),1+y],[3x+1,xy-xz+yz-z^(2),1+y],[3x+1,2xy-2xz,1+y,],[" is equal to: ",,,]

Promotional Banner

Similar Questions

Explore conceptually related problems

det[[2x,xy-xz,y2x+z+1,xy-xz+yz-z^(2),1+y3x+1,2xy-2xz,1+y]]

xy,xz,x^(2)+1y^(2)+!,yz,xyyz,z^(2)+1,xz]|=1+x^(2)+y^(2)+z^(2)

If x+y+z=0, |x|=|y|=|z|=2 then xy+yz+xz is equal to

If x, y and z are real numbers and x+y+z =7 and xy+yz+xz=10 , then what will be greatest value of x?

Using properties of determinant show that : |(-x^2,xy,xz),(xy,-y^2,yz),(xz,yz,-z^2)|=4x^2y^2z^2

solve |[1,yz,yz(y+z)],[1,zx,zx(z+x)],[1,xy,xy(x+y)]|

Using the properties of determinants, show that: abs((x,x^2,yz),(y,y^2,xz),(z,z^2,xy))=(x−y)(y−z)(z−x)(xy+yz+zx)