Home
Class 11
MATHS
a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B...

a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that in a triangle ABC, a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

In any triangle A B C , prove that: \ a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

In /_\ ABC , prove that a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B) = 0

In a DeltaABC, a,b,c are the sides of the triangle opposite to the angles A,B,C respectively. Then the value of a^3sin(B-C)+b^3 sin(C-A)+c^3 sin(A-B) is equal to

If sumcosA=sumsinA=0 then find the value of x^(sin(2A-B-C))x^(sin(2B-C-A))x^(sin(2C-A-B)) is (A) 1 (B) 0 (C) 3 (D) -3

In a DeltaABC , prove that : sin3A sin(B-C)+sin3B sin(C-A) + sin3C sin (A-B)=0 .

a^(3)( sin^(3)B-sin^(3)C) + b^(3) (sin^(3)C-sin^(3)A) + c^(3)( sin^(3)A-sin^(3)B) = 0

a^(3)(sin^(3)B-sin^(3)C)+b^(3)(sin^(3)C-sin^(3)A)+c^(3)(sin^(3)A-sin^(3)B)=0

a^(3)(sin^(3)B-sin^(3)C)+b^(3)(sin^(3)C-sin^(3)A)+c^(3)(sin^(3)A-sin^(3)B)=0