Home
Class 11
MATHS
" If "[z^(3)+z^(2)-z+i=0," then show tha...

" If "[z^(3)+z^(2)-z+i=0," then show that "|z|=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If iz^(3)+z^(2)-z+i=0 then show that |z|=1.

If iz^3+z^2-z+i = 0 , then show that |z|=1.

if iz^3+z^2-z+i=0 then show that absz=1

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

if z_(1),z_(2),z_(3),…..z_(n) are complex numbers such that |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1 Then show that |z_(1) +z_(2) +z_(3) +……+z_(n)|=1

if z_(1),z_(2),z_(3),…..z_(n) are complex numbers such that |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1 Then show that |z_(1) +z_(2) +z_(3) +……+z_(n)|=1

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.

If (1+i)z=(1-i)phi z, then show that z=-iz

IF (1+i)z=(1-i)z, then show that z=-barz .