Home
Class 14
MATHS
I=int tan^(4)udu...

I=int tan^(4)udu

Promotional Banner

Similar Questions

Explore conceptually related problems

int tan^(4)xdx

Assertion (A) : If I_(n) = int tan^(n) xdx then 5 (I_(4) + I_(6)) = tan^(5) x Reason (R) : int tan^(n) " xdx then " I_(n) = (tan^(n-1)x)/(n) -I_(n- 2) " where n " in N The correct answer is

int tan^(4) x dx=

Evaluate: int tan^(4)xdx

Evaluate int tan^(4)xdx .

Let I_(n)=int tan^(n)xdx,(n>1). If I_(4)+I_(6)=a tan^(5)x+bx^(5)+C, where C is a constant of integration,then the ordered pair (a,b) is equal to :

Evaluate: (i) int tan^(5)xdx (ii) int sqrt(tan x)sec^(4)xdx

If I_(n) = int tan^(n) " x dx then " I_(0) + 2I_(2) + I_(4) =

Evaluate I=int tan xdx

(i)int tan^(2)xdx