Home
Class 11
MATHS
f(x)=ln(sqrt(x^(2)-5x-24)-x-2)...

f(x)=ln(sqrt(x^(2)-5x-24)-x-2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2) , is

The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2) , is

The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2) , is

The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2) , is

f(x)=ln((sqrt(8-x^(2)))/(x-2))'

f(x)=ln((x^(2)-5x+6)/(x^(2)+4x+6))

If f(x)=log((x^(2)-5x+6)/(x^(2)+x+1))+sqrt((1)/([x^(2)-1]))) (Where [.1 is greatest integer),Then domain of function f(x) is

Let f(x)=1+x ln(x+sqrt((x^(2))+1))-sqrt((1)+x^(2))andh(x)=f(x)-f^(2)(x)+f^(3)(x) Then.

Domain of f(x)=log(1-x)+sqrt(x^(2)-1)